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In order to assure a continued comparison between laborato-
ries, we realize the necessity of adopting a traveling standard for
the measure of the RF and MW electromagnetic-field intensities.
Furthermore, it should be desirable to adopt a system (dummy
plus sensor) for the reciprocal compatison of dosimetric measure-
ments.
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Electromagnetic Waves in Conical Waveguides with
Elliptic Cross Section

S. BLUME anp B. GRAFMULLER

Abstract —The electromagnetic field in a conical waveguide with an
elliptical cross section is calculated with the aid of two scalar potentials
which satisfy the Helmholtz equation, the Dirichlet, and the Neumann
boundary condition, respectively. The transverse parts of the solutions of
the Helmholtz equation in the sphero-conal coordinate system are products
of periodic and nonperiodic Lamé functions. These functions allow a mode
definition similar to that for conventional waveguides. Some transverse
modal field distributions, together with the corresponding Lamé functions,
are graphically represented for a special elliptic conical waveguide.

1. INTRODUCTION

The electromagnetic field in the interior of a cone with an
elliptical cross section can be built up by solutions of the Helm-
holtz equation in a similar manner as is done in the case of
rectangular or circular waveguides [1], [2]. For these calculations,
the sphero-conal coordinate system is used which has elliptic
cones as coordinate surfaces.
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Fig. 1. Geometry of a cone with elliptic cross section.

The resulting modes show field configurations similar to those
of modes in elliptic hollow pipes described by Chu [3]. Field lines
of the lowest mode have already been given by Ng [4], but higher
order modes have not been calculated as far as the authors know.

In this paper, only a short survey of the solution theory of the
Helmholtz equation in sphero-conal coordinates and the involved
Lamé functions is given, Details may be found in [4]-[11].

II. SoLuUTION OF MAXWELL’S EQUATIONS IN
SPHERO-CONAL COORDINATES

The relation between Cartesian coordinates and the sphero-
conal coordinates r,9,¢ can be defined by (1). In the special
case k% =1, these coordinates become the well-known spherical
coordinates, with the z-axis being the polar axis

x=rsindcose

y=r{1—k*cos’ 9 sing
z=rcos1— k?sin’ g
O<k,k'<l, K2+k?*=1
O0<r<ow, O0<d<o, 0<@x2m. (1)
The coordinates surfaces =49, =const. are cones with an
elliptic cross section (Fig. 1). The extreme flare angles are

6x=ﬂ0
and .
9, =arccos(k-cosdy) (9, 29, if d<7/2). (2)

The electromagnetic field in such a cone can be calculated with
the aid of the substitution
H=curl(¢7)  for TM-waves and
E = —curl(y/F) for TE-waves, respectively. (3)
Then Maxwell’s equations demand that the scalar functions %

and ¢ must satisfy the Helmholtz equation

AYEH + ¢ EH=0 (x:wave number).

In detail, (3) reads for TM-waves

(4)

1 82 E
=.—-—-{——(—r‘£——)+n2r¢£], H,=0
Jjweg ar
120w o
P jweghy 9rdd " h, dp
1 *(rF) r )
"’_jwcohq, arde ’ T hy 89
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Fig. 2.

Transverse modal field distributions for a conical waveguide with elliptic cross section (9, = 60°, 8, =170°, k% =0468. —

electric Ines, ---- magnetic lines.

and for TE-waves

1 [o2(r”
= [(715)“%#”, E =0
Jopg|  Or
1 #(ry") rooyt
P jopghy  9rd® P b, dp
1 3 (ryH rooyt
H,=- #n) ), E¢=——‘P . (6)
jopeh, drde hg 0

The metric scale factors #, and A, are given by

N T k2 sin® 9 + k2 cos®
2= 7"V T 1 K2cosie
oF k2sin® 9 + k"2 cos? @ )
PP 1-k7sine

Equation (4) can be solved in sphero-conal coordinates by sep-
aration of variables ¥(r,9,9) =R, (r)-6, ,(?) ¢, \(p), with

separation constants » and A. This leads to three ordinary
differential equations

d{  dR

;(rz—) -I-[:c2r2 - v(u+1)] R=0
r

dr
d do
2 el g 2. 2g 7
\/1 k* cos 0d&{ﬁ k< cos 19d19}
+[p(r+1)(1 - k*cos>8) - 1] 6=0
d d
\/l—k’zsinztpZ’;{\/T—k’zsinzwd—Z}

+[A—p(r +1)k?sintp] $=0. (8)

The one for R,(r) is the equation of the spherical cylinder
functions of order » (j,(xr),n,(kr), ¥V (kr) or AP (kr)). The
other two are the so-called Lamé equations which are coupled
with each other by separation constants » and A. From the
geometry of the problem follows that the functions ¢, () must
be periodic — called periodic Lamé functions — but the 0, ,($)
are general nonperiodic Lamé functions.
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Fig. 3. Transverse modal field distributions for a conical waveguide with elliptic cross section. (9, = 60°, = T0°, k? = 0.468).
— electric lines, ---- magnetic lines.

The periodic Lamé functions can be classified into four types
which are distinguished by their symmetry relative to ¢ =a/2
and by their periodicity. The functions are calculated with the aid
of Fourier series {11]. The four types are:!

1) even symmetric and 7-periodic; denoted as L2 (¢)

(6=0,1,---)

2) odd symmetric and 2#-periodic;? denoted as LE*+D(g)
(b=0,1,--+)

3) odd symmetric and #-periodic; denoted as L?*)(¢)
(p=1,2,--)

4) even symmetric and 27-periodic;? denoted as L2+ D(gp)
(p=0,1,---).

The upper index in this notation is the number of zeros in the
interval [0, ) and is related to the separation constant A. For
each function type this constant A can be calculated from the
demanded symmetry and periodicity as a function of the other
constant v.

LThis classification was suggested by Ince [6].
27-periodic means not = — but 2«-periodic.

To each of the periodic Lamé functions corresponds exactly
one nonperiodic Lamé function yielding a definite field distribu-
tion. The nonperiodic functions can be represented by a sum over
the associated Legendre functions, the lower index of the latter
being » and the upper index being the summation index. The
nonperiodic Lamé functions are denoted as

1) L(Zn)( 19)

pv

2) L(2u+ 1) ( ,&)

cpv

3) LEN(9)

spv
4) LeEV(9).

spv

The separation constant » has to be chosen in such a way that
the boundary condition E,,, = 0 is satisfied at the surface 9 = 9,
of the perfectly conducting cone. This requirement is equivalent
to the transcendental equations @, ,(8;) = 0 for TM-waves and

d
®v}\

d_0 ) %=0 for TE~-waves (9)
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Fig. 4. Separation constant » as a function of &, (&, = 20°).
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Fig. 5. Separation constant » as a function of 4, (9, = 30°).

which have been solved numerically to get the unknown values ».
The theory of periodic and nonperiodic Lamé functions and the
determination of the separation constants are outlined in
[10]-[12].

III. MOoDES IN ELLIPTIC CONICAL WAVEGUIDES

The properties of the products ©, ,(#)- ¢, x(¢) allow a mode
definition similar to that usually chosen for the modes in a
circular waveguide [1]. There the'indices m and » of a mode are
given by the solutions 2 (me)-J, (a,r) with &, being the nth
root of J,,(aa) = 0 for TM-modes, and J/,(aa) = 0 for TE-modes
(a: radius of the circular waveguide), respectively.

To generalize this definition one can interpret the index m as
the number of zeros of 3% (mg) in the interval [0, 7). This
interpretation also holds for the elliptic cone, so that the index m
of a mode is the upper index of the periodic Lamé functions and
is related to the separation constant A. To make this relation
definite one makes a distinction between even and odd modes
(abbreviated by e and o, respectively) depending on the symme-
try of the periodic Lamé function. Referred to (9) the index »
must be interpreted in the same way as in the case of circular
waveguides.
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Figs. 2 and 3 show the first 12 modes in an elliptic cone with
flare angles &, =60° and 9, =70° (k*=0.468) arranged with
increasing v. To the left of the figures the corresponding periodic
and nonperiodic Lamé functions are sketched, and to the right
two projections of the field lines which run on a sphere are
shown.

The field configuration of the modes is similar to that of the
modes in elliptic waveguides calculated by Chu [3] with the
exception of the ,TM, ;-mode whose field distribution in our case
is similar to that of a circular waveguide.

The field configuration of some modes depends on the ec-
centricity of the elliptic cone. So the field configuration of the
.TM, ;-mode shown is not like that expected from circular wave-
guide [2], because the Lamé functions L2 (@) and LY, (#) differ
principally from functions in that case. With increasing k2 this
appearance vanishes.

The order of the modes also depends on geometry. This is
shown in Figs. 4 and 5.

IV. CONCLUSIONS

The electromagnetic field in a conical waveguide with an
elliptic cross section is described with the aid of two scalar
potentials which satisfy the Helmholtz equation, the Dirichlet,
and the Neumann boundary condition, respectively. The behav-
ior of the transverse parts of the solutions of the Helmholtz
equation allows a generalization of the mode definition used for
conventional waveguides.

The field configuration of some modes depends on the ec-
centricity of the elliptic cone. Also, the order of the modes
depends on geometry.

For an elliptic cone with flare angles #, =60° and #, = 70°
the first 12 modes are graphically represented by the transverse
modal field distributions together with the corresponding peri-
odic and nonperiodic Lamé functions.
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