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In order to assure a continued comparison between laborato-

ries, we realize the necessity of adopting a traveling standard for

the measure of the RF and MW electromagnetic-field intensities.

Furthermore, it should be desirable to adopt a system (dummy

plus sensor) for the reciprocal comparison of dosimetric measure-

ments.
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Electromagnetic Waves in Conical Wavegnides with

Elliptic Cross Section

S. BLUME AND B. GRAFMULLER

.&tract —The electromagnetic field in a conical wavegnide with an

elliptical cross seetion is calculated with the aid of two scalar potentials

which satisfy the Hehnholtz equation, the Dirichlet, and the Neumann

boundary condition, respectively. The transverse parts of the solutions of

the Hehnholtz equation in the sphero-tonal coordinate system are prodncts

of periodic and norqicriodic Lank functions, These functions allow a mode

definition similar to that for conventional waveguides. Some transverse

modal field dktributions, together with the corresponding Lam& functions,

are graphically represented for a special elliptic conical wavegnide.

I. INTRODUCTION

The electromagnetic field in the interior of a cone with an

elliptical cross section can be built up by solutions of the Helm-

holtz equation in a similar manner as is done in the case of

rectangular or circular waveguides [1], [2]. For these calculations,

the sphero-tonal coordinate system is used which has elliptic

cones as coordinate surfaces.
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Fig. 1. Geometry of a cone with e]hptic cross section,

The resulting modes show field configurations similar to those

of modes in elliptic hollow pipes described by Chu [3]. Field lines

of the lowest mode have already been given by Ng [4], but higher

order modes have not been calculated as far as the authors know.

In this paper, only a short survey of the solution theory of the

Hehnholtz equation in sphero-tonal coordinates and the involved

Lam& functions is given. Details maybe found in [4]-[11].

II. SOLUTTON OF MAXWELL’S EQUATIONS IN

SPHERO-CONAL COORDINATES

The relation between Cartesian coordinates and the sphero-

conal coordinates r, $, v can be defined by (l). In the special

case k2 =1, these coordinates become the well-known spherical

coordinates, with the z-axis being the polar axis

x=rsint$cosq

y=rJi=xxG “sm rf

z = rcos $~1 – k’2 sin2q

Osk, k’sl, k2+k’2=1

05r<w, 0585v, 05q1527r. (1)

The coordinates surfaces $ =$0 = const. are cones with an

elliptic cross section (Fig. 1). The extreme flare angles are

l?, = t?~

and

i$=arccos(k.cos$o) ($y >sYx if t$OS7r/2). (2)

The electromagnetic field in such a cone can be calculated with

the aid of the substitution

R= curl(@) for TM-waves and

~ = – curl ( $%) for TE-waves, respectively. (3)

Then Maxwell’s equations demand that the scalar functions ~~

and ~fr must satisfy the Helmholtz equation

A@’ ~ + ~2YE’H = O (~: wave number). (4)

In detail, (3) reads for TM-waves

1

[

i?2(r@)
E,=—

1
i- tc2rijE , H,= O

juco 8r2
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electric Imes, ---- magnetic lines,

and for TE-waves

1

[

a’( rt)H)
H,=—

1
+fi2r~H , E,=O

jtOpO dr2

The metric scale factors h$ and h~ are given by

‘+I=7TEF’
‘q=: “-m

separation constants v and A. This leads to three ordinary

differential equations

()~ r2$ +[~2r2–v(v+l)]R=0

(6)
+[v(v+l)(l –k2cos2&)– A]e=o

~:{~:]

+[A–v(v +l)k’2sin2p] @=0. (8)

The one for Rv ( r) is the equation of the spherical cylinder

functions of order v (jv(Kr), nv(Kr), h$*)(Kr) or h$2)(Kr)). The

other two are the so-called Lam6 equations which are coupled

(7) with each other by separation constants v and k. From the

geometry of the problem follows that the functions o,, ~(q) must

Equation (4) can be solved in sphero-tonal coordinates by sep- ~e periodic — c~led periodic Lam& functions — but “~e’ ~., ~(~)

aration of variables $(r, O,rp) = Rv(r). Ou,~(&) .~v, x(p), with are general nonpenodic Lam& functions.
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Fig. 3. Transverse modaf field distributions for a conical waveguide with elliptrc cross section. ($x= 60°, OY = 70°, kz = 0.468).

electric lines, ---- magnetic lines.

The periodic Lam& functions can be classified into four types To each of the periodic Lad functions corresponds exactly

which are distinguished by their symmetry relative to q = 7/2 one nonperiodic Lam6 function yielding a definite field distribu-

and by their periodicity. The functions are calculated with the aid tion. The nonpenodic functions can be represented by a sum over

of Fourier series [11]. The four types are:l the associated Legendre functions, the lower index of the latter

1) even symmetric and n-periodic; denoted as L~~~J( ~)
being v and the upper index being the summation index. The

(p=o,l,... )
nonperiodic Lad functions are denoted as

2) odd symmetric and 2r-penodic; 2 denoted as L$~~+ 1,(q) 1) L&~(19)

(p=o,l,... )

3) odd symmetric and n-periodic; denoted as L$~) ( tp) 2) L$~u+ 1)( 0)

(p=l,2,... )

4) even symmetric and 2 n-periodic; 2 denoted as L$~~+ 1,( rp)
3) L$y(o)

(p=o,l,... ). 4) L$~P+l)( 0) .

The upper index in this notation is the number of zeros in the The separation constant -v has to be chosen in such a way that

interval [0, n) and is related to the separation constant A. For the boundary condition E,,n = O is satisfied at the surface @ =$0
each function type this constant A can be calculated from the

demanded symmetry and periodicity as a function of the other
of the perfectly conducting cone. This requirement is equivalent

to the transcendental equations @,,A( 00 ) = O for TM-waves and
constant v.

1This classification was suggestedby Ince [6]. ;@v,A

22~-periodic means not w— but 2v-periodic.

= O for TE-waves (9)

~o
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Fig. 4. Separation constant v as a function of OY (OX = 20”).
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Fig. 5. Separation constant v as a function of 8Y ($X= 30° ).

which have been solved numerically to get the unknown values v.

The theory of periodic and nonperiodic Lad functions and the

determination of the separation constants are outlined in

[10]-[12].

III. MODES IN ELLIPTIC CONICAL WAVEGUIDES

The properties of the products Q,, ~($). +V, 1( rp) allow a mode

definition similar to that usually chosen for the modes in a

circular waveguide [1]. There the’ indices m and n of a mode are

given by the solutions ~01(mrp) .J~ (an r) with an being the n th

root of J~ (au) = O for TM-modes, and J~ ( au) = O for TE-modes

(a: radius of the circular waveguide), respectively.

To generalize this definition one can interpret the index m as

the number of zeros of ~, ( m ~) in the interval [0, m). This

interpretation also holds for the elliptic cone, so that the index m

of a mode is the upper index of the periodic Lam& functions and

is related to the separation constant A. To make this relation

definite one makes a distinction between even and odd modes

(abbreviated by e and o, respectively) depending on the symme-

try of the periodic Lam6 function. Referred to (9) the index n

must be interpreted in the same way as in the case of circular

waveguides.

Figs. 2 and 3 show the first 12 modes in an elliptic cone with

flare angles $X= 60° and ~,= 70° (k2 = 0.468) arranged with

increasing v. To the left of the figures the corresponding periodic

and nonperiodic Lams functions are sketched, and to the right

two projections of the field lines which run on a sphere are

shown.

The field configuration of the modes is similar to that of the

modes in elliptic waveguides calculated by Chu [3] with the

exception of the ,TMO, ~-mode whose field distribution in our case

is similar to that of a circular waveguide.

The field configuration of some modes depends on the ec-

centricity of the elliptic cone. So the field configuration of the

~TM2, ~-mode shown is not like that expected from circular wave-

guide [2], because the Lard functions .@(v) and L&V(~) differ

principally from functions in that case. With increasing k2 this

appearance vanishes.

The order of the modes also depends on geometry. This is

shown in Figs. 4 and 5.

IV. CONCLUSIONS

The electromagnetic field in a conical waveguide with an

elliptic cross section is described with the aid of two scalar

potentials which satisfy the Hehnholtz equation, the Dirichlet,

and the Neumann boundary condition, respectively. The behav-

ior of the transverse parts of the solutions of the Hehnholtz

equation allows a generalization of the mode definition used for

conventional waveguides.

The field configuration of some modes depends on the ec-

centricity of the elliptic cone. Also, the order of the modes

depends on geometry.

For an elliptic cone witi” flare angles @x= 60° and OY= 70°

the first 12 modes are graphically represented by the transverse

modal field distributions together with the corresponding peri-

odic and nonperiodic Lad functions.

ReferenCeS

[1} S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waues m

Commumctmon Electronics. New York: Wdey, 1969.

[2] C. S. Lee, S. W Lee, and S. L. Chuang, “Plots of modal field distribrr-

tion in rectangular and circular waveguides,” IEEE Trans. Mtcrowaoe

Thervy Tech., vol. MTT-33, pp. 271-274, 1985.

[3] L J. Chu, “Electromagnetic waves in elhptic hollow pipes of metal,” J.

App[. Phpr,, vol 9, Pp. 583–591, 1938.
[4] A. C. K. Ng. “The propagation and radiation properties of waveguides

and horns of elliptical cross-section,” DoctoraJ dissertation, Guildford
University of Surrey, 1971.

[5] E. L. Ince, “The periodic Lam+ functions,” Proc. Roy. Sot. Edvrburgh,
vol 60, ~P. 47-63, 1939/40.

[6] E. L. Ince, “Further investigations into periodic Lam& functions,” Proc.

Roy. Sot. Edurburgh, vol. 60, pp. S3-99, 1939/40,

[7] A. Erd41yi, “On Lam& functions,” Phdosophical Magazine, vol. 32, pp.

348-350, 1941.

[8] A. Erd61yi, “Expansions of Lam6 functions into series of Legendre

functions,” Proc. Roy. Sot. Edinburgh, Sect. A, vol. 62, pp. 247-267,

1943-49.

[9] A. Erd41ye, Ed., H,gher Trarrscerrdevrtal Fwrctiom, Bateman Manuscript

ProJect, McGraw-Hill, 1955.

[10] J K M. Jansen, “Simple-periodic and non-periodic Lame functions and

their application in the theory of conical waveguides~’ Doctoral disserta-

tion, Technological University Eindhoven, 1976,

[11] B. Grafmiiller, “’ Kegelh&ner und Kegelantennerr elliptischen Quer-

schmtts,” Doctoral dissertation, Ruhr-Universitiit Bochum, 1985.

[12] S. Blume and G. Kahl, “Field singularities at the tip of a cone with

elliptic cross section; Oprzk 70, no. 4, pp. 170-175, 1985.


